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Stability of stochastically inhomogeneous, compressible elastic bodies with 
respect to small, as well as to finite perturbations, is studied in three-dimens- 
ional formulation. The bodies are under deterministic external loads and ex- 

perience finite subcritical deformations. 
The stability of elastic bodies with random inhomogeneities was studied for 

the case of small, subcritical deformations in [l]. The basic relations for a 
stochastically inhomogeneous compressible hyperelastic body can be obtained 
from the relations for compressible hyperelastic media given in [2]. 

1. We write the equations of state as follows: 

ai J=L$, L+ *&- 1 + 2&&+ 3pt&, Pij = a,naR (1.1) 

A, = en”, A, = enkIn, A, = enme,[ep, CD = @ (A,, AS, A,, CP) 

Here cp denote the parameters of the medium (p = 1,2, . . ., II) depending on 
’ the spatial coordinates in a random manner; Ai are the algebraic invariants; eil 

are the deformation tensor components and sij are the generalized stress tensor 
components. The covariant components of the Green deformation tensor are written 
in the form 

2eij = Gij - gijy Gfj = ci”cj’gnl, tin = 6in + Viu” (1.2) 

while the equations of equilibrium and the boundary conditions in terms of the stresses 

are 
g*‘Vi (s*$“) + pxm = 0, g%,ic,mN$ = Pm (1.3) 

where gfj is the metric tensor of the Lagrangian deterministic reference frame of the 
initial state, Pm are the components of the deterministic surface forces and Ni are 
the deterministic unit vectors of the normal to the surface of the body prior to deforma- 

tion. 
Since the parameters of the medium in (1.1) depend on the spatial coordinates in 

a random manner, it follows that the field quantities in the relations (1.1) - (1.3) will 
also be random functions of the spatial coordinates. 

Let us assume that the parameters of the medium depend on the homogeneous, iso- 
tropic random function 

cp = <cp) f = <Cp) (1 + 1') = CC,) + CP' (P = 1,2, . . ., l-I) 
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Here and henceforth W denotes the ma~ematical ~pec~tionof~e quantity x, 
and 2’ denotes its fluctuation. 

Consecutive application of the method of statistical linearization yields the math- 
ematical expectations of the field functions, and their fluctuations, in the form 

CP = (C*) $ CP’, Cp’ = C&‘, Q = ~~~5 + el#, eiy = ei3jfr (1.4) 
s.j = (,.j) + & z z ,.f = Qf II I’ z xsi$ = silj + Siaj (~‘2) 

<e,> = $1 -I- cp2 V’> > <Q) = r5,f -+ SL: (f’“) 

clearly, we have cps = cpr = (cp>, cpz = 0. 
Using (1.4). we can obtain from (1.1) - ( 1.3) an averaged and a fluctuational 

system of equations. The assumption that the fluctuations are small, enables us to 
linearize (1.1) - (1.3) and obtain these systems. Thus, any function B (2) can be 
expanded into a Taylor series 

and from this we have 

Let us call the term B (q) system 1, the term preceding #) system 2, 
and the term preceding f’ system 3, Thus, to obtain the averaged system of 
equations we must add to the equations of system 1 , the equations of system 2 
multiplied by <f’Y . The fluctuational system is the same as system 3 multiplied 

by f’. 
For (1.1) the system X - 3 of equations have the form 

(1.6) 

The potential @I coincides with any potential of the determinate problem 4, 
provided that the last lower index in every term is 1. 

For the geometrical relations we have 

2sik = G,,& Gi jti = $&sgnr, c$% = 6% + Viu; (1.7) 

and for the equations of equilibrium and the boundary conditions t 1;;) we have 

pvi (s;acg) + Xkrn = 0, gln&c$vi 3 Pkm; P,m = .’ 
k -= 1 

; ‘0: x=;_2, (1.8) 
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Here and henceforth the index k will indicate whether the relations (1.6) - (1.8) 
belong to the system 1 e 2 or 3 . Summation over the Greek letter indices is impl- 
icit and obeys the rule 

Zt is clear that the elongation hi is also a random quantity which can be written, 
according to (l-4), in the form 

& = ai, + hi% Pa> + &sf’ 
(1.9) 

where kit represent certain, non-random quantities. 
When the initial state in macro-homogeneous, 

Silri z const&j (1.10) 

we obtain 

2. Let us investigate the stability with respect to small perturbations. We denote 
the components of the field functions of perturbed state by the index plus, those of the 
nonp~~rb~ state by index zero, and leave the component of the perturbations 
without any indices 

The quantities with index zero can be computed using the formulas of Sect. 1, by put- 
ting a zero index everywhere. Systems linear with respect to perturbations are obtain- 

ed by linearizing (1.6) -( 1.8). The equations of state (1.6) yield 

The geometrical relations (1.7), the equations of equilibrium (with the mass forces 
neglected) and the boundary conditions (1.8) together yield 

In the general case the linearized equations of state (2.2) can be written for a 

compressible body in the form 
S,,k' = h&,l_,f,I?+,m. 

(2.5) 
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Direct substitution confirms that the quantities J.ik.a represent the components of 
a fourth rank tensor satisfying the conditions 

h i..1 
n7n.k = 

hn.-l 
m.k, h $.‘k” f A;;.,, hln,$ # ?&:; 

The relations (2.5) are written in a general form, and the tensor 
In full because of its bulk. 

hk$k is not given 

Let us inspect the simplifications which arise in the case of a macrohomogeneous 
initial state (1. lo>, (1.11). The linearized equations of state can written in 
orthogonal coordinate in the 

& = i_ (1 d,j) pi& + ~jjg~~~~~v~~~~) 

Then the aincc and of the of state can be 
for the potential [Z] 

the formulas 

the equations state (2.5) the equations motion and 

conditions (2.4) the free we arrive the following of homogeneous 
equations in with the conditions at free sur- 

L mm”np = itfk, D,,,,u,~ = Mk, Mk = 0 (2.7) 

Here &.,nk and Dmnk are the differential operators of the second and first order, 

respectively, and their form depends on the actual formulation of the problem. 
Systems of equations for the mathematical expectations and fluctuations can be 

written, according to Sect. 1, in the form 

and this yields, by virtue of the arbitrariness of <f’a>, the boundary value problem 

(2.7). The critical load is found either from the condition of existence of a nontrivial 
solution of the problem (2.7), in the case of static problems, or from the condition 
that the displacements do not increase with time, in the case of the dynamic problems. 

We note that the solution of the boundary value problem with index 1 represents a 

solution of a determinate boundary value problem with parameters cP = ePr = <Q,P>. 

Thus, as a result of solving the determinate boundary value problem, we obtain 
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the critical values of the quantities with index 1: the critical force 
tion L1, deformation enlo” and stress 9nIon . 

PIm , elonga- 
Knowing the critical character- 

istic values with index 1, we can recover the quantities with indices 2 and 3 from the 
second and third boundary value problem for the nonperturbed state (1.6) - (1.8). The 
values of the field functions under the action of the force PI* can be obtained from 

(1.4) and (1.9). 

3. Let us now extend the arguments given above to the case when finite perturba- 
tions are imposed on the basic state of the body as described by the relations (1.6) - 
(I., 8). In this case the right hand sides Of the relations (2.2) and (2.3) must be 
supplemented by the following corresponding terms: 

The relations appearing in (2.2) and (2.3) which are not given here, remain unchang- 

ed. 
Expansion of the function Qk into a Taylor series yields the following expression: 

(3.1) 

(1+ p + s = n; 1, p, s = 0,1,. * .; n = i,2, . ..) 

The explicit form of (3.1) is governed by the actual form of the elastic potential. 
Equations of equilibrium and boundary conditions are obtained from (2.4) by adding 
the terms 

go%&&, g”ns&~fi:pN; 

to the left hand sides of the corresponding expressions. 

We shall write the solution of the resulting nonlinear boundary value problem in 
the form of a series (yr (t), are functions of time) 

%X - Yt (t) ‘Pm” (ri) (m = 1, 2, 3; I = 1, 2, . ..) (3.2) 

We choose the forms of flexures with respect to small per~rbatio~ as the basis func- 
tions cprn[ satisfying the geometrical boundary conditions. We also assume that the 

condition of completeness of the system of functions ‘pm” [S] represents a sufficient 

condition for the convergence of the series (3.2). 
We write the relation (3.2), by virtue of (1.5). in the form 

%Ih’ = Yl, (Q (P;s (Si) (3.3) 
Constructing the variational equations of the Bubnov - Gale&in method [4] correspond- 
ing to the nonlinear boundary value problem and taking into account (3.3) and the 

smallness of the fluctuations, we obtain 
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This in turn yields, by virtue of the arbitrariness of <f’s>, a system of nonlinear, 
ordinary differential equations, At the same time, the solution of the system of equa- 
tions with index 1, i. e. 

Lmllyl = 0; 1 = 1,2, . . .; m = 1, 2, 3 
(3.4) 

corresponds to the solution of the determinate system of nonlinear, ordinary different- 

ial equations. Thus the problem of stability of the basic state has been reduced to the 
problem of stability of the zero solution of (3.4). 

It is clear that, when the function 

is positive, then it represents a Liapunov function for the operator equations (3,4), 
since by virtue of the system its derivative is non-positive [5]. Consequently the con- 
dition of positiveness of the function will represent a sufficient condition for the stabil- 

ity of the zero solution of the system (3.4). The quantities with indices 2 and 3 can 

be recovered in the same manner. 
In conclusion we note that the proposed approach enables us to obtain the mean 

values of the critical elongations and hence of the stresses, defor~tions and displace- 

ments, depending on the order of dispersion of the ~homog~eity. At the same time, 
the value of the critical force coincides, in the mean, with its value in the zero 

approximation. 
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