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Stability of stochastically inhomogeneous, compressible elastic bodies with
respect to small, as well as to finite perturbations, is studied in three-dimens-
ional formulation, The bodies are under deterministic external loads and ex-
perience finite subcritical deformations,

The stability of elastic bodies with random inhomogeneities was studied for
the case of small, subcritical deformations in {1]. The basic relations for a
stochastically inhomogeneous compressible hyperelastic body can be obtained
from the relations for compressible hyperelastic media given in [2].

1. We write the equations of state as follows;
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Here ¢p denote the parameters of the medium (p = 1,2, ..., II) depending on
the spatial coordinates in a random manner; A; are the algebraic invariants; aiJ‘
are the deformation tensor components and s/ are the generalized stress tensor
components, The covariant components of the Green deformation tensor are written
in the form

285 = Gij — gijy Gij = ¢;"cjlgny, " = §;" + Viun (1.2)

while the equations of equilibrium and the boundary conditions in terms of the stresses
are
g™V, (sale™) + pX™ = 0, gMlsyie™N; = P™ (1.3)

where g! is the metric tensor of the Lagrangian deterministic reference frame of the
initial state, P™ are the components of the deterministic surface forces and N; are
the deterministic unit vectors of the normal to the surface of the body prior to deforma-
tion,

Since the parameters of the medium in(1,1) depend on the spatial coordinates in
a random manner, it follows that the field quantities in the relations (1.1) — (1, 3) will
also be random functions of the spatial coordinates,

Let us assume that the parameters of the medium depend on the homogeneous, iso-
tropic random function

Cp=(cp>f=<cp>(i+fl)=(cp>+cD' (P=1,2, e ey n)
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Here and henceforth <#> denotes the mathematical expectationofthe quantity =,
and =z’ denotes its fluctuation,
Consecutive application of the method of statistical linearization yields the math-
ematical expectations of the field functions, and their fluctuations, in the form
Cp= ey by, o) =cf, el=cehbed, el =e (1.4)
si=h 57, 57 =51, sh =5t dn
(o> =y e I, e =e] Fed ("

Clearly, we have c¢py = ¢p; = <(cpd, £py = 0.

Using (1.4), we can obtain from (1, 1) — (1.3) an averaged and a fluctuational
system of equations, The assumption that the fluctuations are small, enables us to
linearize (1.1) — {(1.3) and obtain these systems. Thus, any function B (z) can be
expanded into 2 Taylor series
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and from this we have
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Let us call the term B (x;) system 1, the term preceding (/%> system 2,
and the term preceding /' system 3, Thus, to obtain the averaged system of
equations we must add to the equations of system 1, the equations of system 2
multiplied by  ¢f®y . The fluctuational system is the same as system 3 multiplied

by £
For (1.1) the system 1 — 3 of equations have the form
(p L.i=28 )'._8_128 i 9 43 i9
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The potential @, coincides with any potential of the determinate problem @,
provided that the last lower index in every termis 1.
For the geometrical relations we have

26f = CGu8", Gy = CipCiglnts  Ch =00+ Vi a7
and for the equations of equilibrium and the boundary conditions (1, 3) we have
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Here and henceforth the index k will indicate whether the relations (1, 6) — (1, 8)
belong to the system 1 , 2or 3., Summation over the Greek letter indices is impl-
icit and obeys the rule
abye;, k=1
Z %aPgly = { a1D1014-a1bacy +agbycy4-asby €1 a1 bsCat-agbicat+-ybacy, == 2
@,B,v abics + aybeey - agbie,, k=3

It is clear that the elongation X is alsc a random quantity which can be written,
according to (1.4), in the form

M= g Aga <P+ Ay’

, (1.9)
where A; represent certain, non-random quantities.
When the initial state in macro-homogeneous,
s = consty§;f (1. 10)

we obtain

cg'k = 67;,r + Viukj = xikaif. Ay == const; 2eikf = (A'ia’“:p — yk) LY i (1.11)

2, Let us investigate the stability with respect to small perturbations, We denote
the components of the field functions of perturbed state by the index plus, those of the
nonperturbed state by index zero, and leave the components of the perturbations
without any indices

3+Z = sicj + sizo (ilt} -+ Si;j -+ sﬂj -+ 5”32 (f'.> + sigjf!
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The quantities with index zero can be computed using the formulas of Sect, 1, by put-
ting a zero index everywhere, Systems linear with respect to perturbations are obtain-
ed by linearizing (1, 6) —(1.8). The equations of state (1, 6) yield
Sk _Lmdks—f—f_. ‘Da , Lyf=2e)] Mzo +3p‘,, M&
Pl =eleh +emeds, Ay =en Ay = 28,080 (2.9
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The geometrical relations (1,7), the equations of equilibrium (with the mass forces
neglected) and the boundary conditions (1. 8) together yield

%edy = Gy ™y Gie = (ool + Clai) Binr = Vit” (2.3)
g, (st +- siwc;é") = puy™, g ™ (sjucly + signg) N =P, (2.4)

In the general case the linearized equations of state (2, 2) can be written for a
compressible body in the form

sni! = l;‘y;f.aVzugm- (2.5)
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Direct substitution confirms that the quantities A% ! represent the components of
a fourth rank tensor satisfying the conditions
Mk = Ml i d e MR AT

il

The relations (2, 5) are written in a general form, and the tensor Mok

in full because of its bulk,

Let us inspect the simplifications which arise in the case of a macrohomogeneous
4im'.tia1 state (1.10), (1.11), The linearized equations of state can be written in the
orthogonal coordinate system in the form

is not given

S = 870no Mg Vit + (1= 87) Wy, (hjp Vit + €755k 10V ") (2.6)

Then the coefficients 4;,, and Bijo of the equation of state (2. 6) can be computed
for the Murnaghan-type potential 2]

1 4
D= 5 My + g+ 5= A+ bAds + 5 A

from the formulas

@y =2 [Yahy + 8y Ay + by (Bl + €ng) + 18"
Bk = Mg T boyg + Mty (8l + 8_-;“)

Substituting the equations of state (2, 5) into the equations of motion and boundary
conditions (2.4) at the free surface, we arrive at the following system of homogeneous
differential equations in displacements, with the boundary conditions at the free sur-
face:

My, My =0 2.7

L = My, D

mna¥np mna¥np =

Hete Ly and Dy are the differential operators of the second and first order,
respectively, and their form depends on the actual formulation of the problem.

Systems of equations for the mathematical expectations and fluctuations can be
written, according to Sect, 1, in the form

Lmnlunl +< ,=> <Lmnlun2 +1L mn2tn1 + 1L mn3un3} =0

L, t,st L, sty = 0

D ‘mni¥nl +<f & D, mn1¥n2 +D mn2¥n1 + D, mnSun}i) E:!cES =0
D itips T Drnnaunl Jees = 0

and this yields, by virtue of the arbitrariness of <f’®y, the boundary value problem
(2.7). The critical load is found either from the condition of existence of a nontrivial
solution of the problem (2.7), in the case of static problems, or from the condition
that the displacements do not increase with time, in the case of the dynamic problerms.
We note that the solution of the boundary value problem with index 1 represents a
solution of a determinate boundary value problem with parameters ¢p = cp; = {(¢p).
Thus, as a result of solving the determinate boundary value problem, we obtain
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the critical values of the quantities with index 1; the critical force P,™, elonga-
tion Ap;, deformation €n°" and stress ", Knowing the critical character-
istic values with index 1, we can recover the quantities with indices 2 and 3 from the
second and third boundary value problem for the nonperturbed state (1. 6) — (1, 8). The
values of the field functions under the action of the force P,™ can be obtained from
(1.,4) and (1. 9).

3, Letus now extend the arguments given above to the case when finite perturba-
tions are imposed on the basic state of the body as described by the relations (1. 6) —
(1.8). In this case the right hand sides of the relations (2, 2) and (2. 3) must be
supplemented by the following corresponding terms;

. . . i !
sik — L%aq’a, Py~ E'Jz is, Agy— 2 3?5
A3k - 38’ Elﬂﬁ"m’v + 8 alﬁ mv; G k> cga Jﬂgln

The relations appearing in (2,2) and (2, 3) which are not given here, remain unchang-
ed,
Expansion of the function @ into a Taylor series yields the following expression;

14p-s=n

" o° :
= e AL AR S
O e oA, Asp (.1
+p+s=nlps=01,..;n=12,..)

The explicit form of (3.1) is governed by the actual form of the elastic potential,
Equations of equilibrium and boundary conditions are obtained from (2, 4) by adding
the terms

gy gl

°ln 1.
3 naclﬁ’ 14 N

Snou nB
to the left hand sides of the corresponding expressions,

We shall write the solution of the resulting nonlinear boundary value problem in
the form of a series (y; (t), are functions of time)

m=n e (z) (m=1,2,31=12.) (3.2)

We choose the forms of flexures with respect to small perturbations as the basis func-
tions @, satisfying the geometrical boundary conditions, We also assume that the
condition of completeness of the system of functions ¢,,! [3] represents a sufficient
condition for the convergence of the series (3, 2).

We write the relation (3. 2), by virtue of (1,5), in the form

Umk = Y)q (£) (leg (=1) (3.3)

Constructing the variational equations of the Bubnov — Galerkin method [4] correspond-
ing to the nonlinear boundary value problem and taking intoc account (3.3) and the
smaliness of the fluctuations, we obtain

LmI{ (yl) + <}¢12> Lmﬁl (y},: Yas ?13) == 0» L’msz (yh y3} = 0
. L I
LY (U Yo, ) = Al -+ Blo¥p + Flonip + Erygyy + -
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This in turn yields, by virtue of the arbitrariness of (f’*), a system of nonlinear,
ordinary differential equations, At the same time, the solution of the system of equa-
tions with index 1, i.e,

Lpydy=01=12,..;,m=12,3 (3.4)

corresponds to the solution of the determinate system of nonlinear, ordinary different-
ial equations, Thus the problem of stability of the basic state has been reduced to the
problem of stability of the zero solution of (3.4).

It is clear that, when the function

V=1 Apyy'vi’ + Yo Buynyy + YsDunnnt -

is positive, then it represents a Liapunov function for the operator equations (3. 4),
since by virtue of the system its derivative is non-positive {5}, Consequently the con-
dition of positiveness of the function will represent a sufficient condition for the stabil-
ity of the zero solution of the system (3.4), The quantities with indices 2 and 3 can
be recovered in the same manner.

In conclusion we note that the proposed approach enables us to obtain the mean
values of the critical elongations and hence of the stresses, deformations and displace-
ments, depending on the order of dispersion of the inhomogeneity. At the same time,
the value of the critical force coincides, in the mean, with its value in the zero
approximation,
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